Processing visual data at scale requires infrastructure that treats multimodal content as native data types. Traditional data pipelines break when you process images embedded in PDFs, video transcripts with temporal alignment, or batch inference across thousands of visual assets.
This guide shows you how to build production-grade pipelines for video and image data using Fenic, Typedef's open-source DataFrame framework designed for AI workloads. Get started at https://github.com/typedef-ai/fenic
Why Visual Data Processing Fails in Traditional Pipelines
Your highest-value business data exists in formats that standard ETL cannot handle:
- Customer support tickets with embedded screenshots
- Product documentation containing diagrams and charts
- Sales call recordings with both audio and shared visuals
- Legal contracts with signatures and financial charts
The statistics tell the story. According to https://typedef.ai/resources/unstructured-data-management-statistics, 80% of enterprise data exists in unstructured formats, with images and video representing a significant portion. Yet most data teams lack infrastructure to process visual content without stitching together OCR models, computer vision APIs, and custom preprocessing scripts.
The result: brittle pipelines with multiple failure points, unpredictable costs, and maintenance overhead that scales with data volume.
Multimodal AI Architecture Basics
Modern multimodal AI systems process text, images, audio, and video through unified architectures. Rather than separate specialized models, these systems use:
- Specialized encoders for each modality (vision transformers for images, audio encoders for video)
- Fusion modules that align and combine modality-specific features
- Output layers that translate fused representations into structured data
Market data from https://typedef.ai/resources/multimodal-ai-engine-stats shows the multimodal AI market expanding from $2.36 billion to $93.99 billion by 2035, reflecting enterprise recognition that unified processing delivers better results than piecemeal approaches.
Processing PDFs with Embedded Images
Documents often contain visual information that text extraction alone misses. Fenic's parse_pdf function handles both text and visual content through native multimodal model support.
pythonimport fenic as fc # Configure Gemini for native PDF processing session = fc.Session.get_or_create( fc.SessionConfig( app_name="document_pipeline", semantic=fc.SemanticConfig( language_models={ "gemini": fc.GoogleDeveloperLanguageModel( model_name="gemini-2.0-flash", rpm=100, tpm=1000, ) }, default_language_model="gemini", ), ) ) # Discover and parse PDFs with image descriptions pdfs = session.read.pdf_metadata("data/docs/**/*.pdf", recursive=True) markdown = pdfs.select( fc.col("file_path"), fc.semantic.parse_pdf( fc.col("file_path"), page_separator="--- PAGE {page} ---", describe_images=True, ).alias("markdown"), )
The describe_images=True parameter instructs the model to generate descriptions of images, diagrams, and charts. This converts visual information into text that downstream systems can process, search, and analyze.
Read more about PDF processing at https://typedef.ai/blog/fenic-0-5-0-smarter-docs-date-data-types-openrouter-plus-planning-and-reliability-upgrades
Metadata-Driven Document Discovery
Before processing visual content at scale, you need visibility into your document corpus. The pdf_metadata reader provides instant access to file characteristics without parsing overhead.
python# Load metadata for all PDFs pdf_inventory = session.read.pdf_metadata( "reports/**/*.pdf", recursive=True ) # Filter based on visual content density image_heavy_docs = pdf_inventory.filter( (fc.col("image_count") > 10) & (fc.col("page_count") < 50) ) # Route documents based on characteristics priority_docs = pdf_inventory.filter( fc.col("has_signature_fields") | (fc.col("image_count") > 5) )
Metadata fields include:
image_count- Total images in the PDFpage_count- Number of pagesfile_size- Size in bytesis_encrypted- Encryption statushas_signature_fields- Presence of signature fieldshas_forms- Contains form fieldscreation_dateandmod_date- Timestamps
This enables intelligent routing where image-heavy documents get processed with vision-enabled models while text-only documents use faster, cheaper alternatives.
Processing Video Content Through Transcripts
Video contains two information streams: visual content and audio. For many business use cases, audio transcripts provide the primary value, but temporal alignment with visual elements requires specialized data types.
Fenic's TranscriptType handles three formats:
- SRT (SubRip) - Indexed entries with timestamp ranges
- WebVTT (Web Video Text Tracks) - Speaker names and timestamps
- Generic - Conversation transcript format
All formats parse into a unified schema with speaker identification, timestamps, and content.
pythonfrom fenic.core.types import TranscriptType # Load video transcripts transcripts = session.read.docs( "meetings/**/*.srt", content_type="markdown", recursive=True ) # Extract structured information from timed segments class MeetingAction(BaseModel): assigned_to: str task: str deadline: Optional[str] actions = transcripts.select( fc.col("speaker"), fc.col("start_time"), fc.semantic.extract( fc.col("content"), response_format=MeetingAction ).alias("action") ).filter( fc.col("action.assigned_to").is_not_null() )
The temporal information enables:
- Identifying when specific topics arose
- Tracking speaker contributions
- Correlating transcript segments with visual slides or screen shares
Extracting Structure from Visual Content
Once images and video are represented as text (through OCR, transcripts, or model-generated descriptions), semantic operators transform unstructured content into structured data.
The semantic.extract operator uses Pydantic schemas to define extraction targets:
pythonfrom pydantic import BaseModel, Field from typing import List, Literal class ProductFeature(BaseModel): name: str = Field(description="Feature name from the slide") category: Literal["performance", "usability", "cost"] description: str class PresentationSlide(BaseModel): title: str main_topic: str features: List[ProductFeature] has_diagram: bool = Field(description="Whether slide contains diagram") # Process presentation with visual elements slides = session.read.pdf_metadata("presentations/**/*.pdf") structured_slides = slides.select( fc.col("file_path"), fc.semantic.parse_pdf( fc.col("file_path"), describe_images=True ).alias("content") ).select( fc.semantic.extract( "content", response_format=PresentationSlide ).alias("slide_data") ).unnest("slide_data") # Filter to high-value content priority_slides = structured_slides.filter( (fc.col("has_diagram") == True) & (fc.col("main_topic").contains("roadmap")) )
This pattern works for:
- Invoice processing - Extracting line items from scanned documents
- Form analysis - Pulling structured data from PDFs
- Contract parsing - Extracting terms, dates, and parties
Learn more about semantic operators at https://typedef.ai/resources/build-reliable-ai-pipelines-fenic-semantic-operators
Optimizing Multimodal Inference at Scale
Processing thousands of images or hours of video requires careful optimization. Fenic provides several mechanisms to control costs and latency.
Intelligent Batching and Rate Limiting
The framework automatically groups API calls to minimize latency and respect provider limits:
pythonconfig = fc.SessionConfig( semantic=fc.SemanticConfig( language_models={ "vision_model": fc.OpenAILanguageModel( model_name="gpt-4o", rpm=500, # Requests per minute tpm=200_000 # Tokens per minute ) } ) )
Self-throttling mechanisms adjust request rates based on provider responses. The framework handles retries for transient failures and provides logging for debugging production issues.
Deduplication Before Processing
Visual content often contains redundancy. Product images appear in multiple documents. Meeting slides get reused across presentations. Standard disclaimers appear on every contract page.
Deduplicate before expensive model calls:
python# Extract unique visual elements first unique_images = ( pdfs .select(fc.semantic.parse_pdf(fc.col("path"), describe_images=True)) .filter(fc.col("markdown").contains("![")) # Has images .distinct() # Remove duplicates ) # Process only unique content processed = unique_images.select( fc.semantic.extract("markdown", ImageMetadata) )
Fenic's caching system stores results at any pipeline step:
python# Cache parsed PDFs to avoid re-processing parsed_cache = session.table("parsed_pdfs") if not parsed_cache.exists(): parsed = pdfs.select( fc.semantic.parse_pdf(fc.col("path"), describe_images=True) ) parsed.write.table("parsed_pdfs") else: parsed = parsed_cache
Provider Selection for Cost-Performance Tradeoffs
Different models offer varying capabilities at different price points. Route workloads based on task requirements:
pythonconfig = fc.SessionConfig( semantic=fc.SemanticConfig( language_models={ "fast": fc.GoogleDeveloperLanguageModel( model_name="gemini-2.0-flash-lite", rpm=1000, tpm=1_000_000 ), "accurate": fc.OpenAILanguageModel( model_name="gpt-4o", rpm=500, tpm=200_000 ) }, default_language_model="fast" ) ) # Use fast model for simple extraction simple = df.select( fc.semantic.extract("content", SimpleSchema, model_alias="fast") ) # Use accurate model for visual content analysis complex = df.select( fc.semantic.extract("content", ComplexSchema, model_alias="accurate") )
Details on multi-provider support: https://typedef.ai/blog/fenic-0-4-0-released-declarative-tools-mcp-and-huggingface-plus-major-dx-and-reliability-gains
Semantic Joins Across Modalities
Traditional joins require exact matches. Visual content needs semantic matching based on meaning rather than keywords.
python# Match product images to catalog descriptions images = session.read.pdf_metadata("product_photos/**/*.pdf") descriptions = session.read.csv("catalog.csv") matched = images.semantic.join( other=descriptions, predicate=""" Does the image content match this product description? Image: {{left_on}} Description: {{right_on}} """, left_on=fc.semantic.parse_pdf(fc.col("file_path"), describe_images=True), right_on=fc.col("product_description") )
Use cases:
- Matching screenshots to bug reports
- Associating diagrams with documentation sections
- Linking video segments to presentation slides
Multi-Stage Visual Processing
Visual processing often requires multiple passes. First pass extracts basic structure, second pass enriches with domain knowledge.
python# Stage 1: Extract basic visual elements basic = pdfs.select( fc.col("file_path"), fc.semantic.parse_pdf(fc.col("file_path"), describe_images=True) ).select( fc.col("file_path"), fc.semantic.extract("markdown", BasicVisualElements) ).unnest("basic_elements") # Stage 2: Classify and enrich enriched = basic.select( fc.semantic.classify( fc.col("description"), classes=["product", "diagram", "screenshot", "chart"], examples=domain_examples ).alias("category"), fc.semantic.map( "Generate technical description: {{description}}", description=fc.col("description") ).alias("technical_desc") )
Staging enables using faster models for extraction and reserving expensive models for domain-specific analysis.
Handling Failed Extractions
Visual content varies in quality. Scanned documents have artifacts. Images lack contrast. Transcripts contain crosstalk. Production pipelines need graceful degradation.
python# Track processing coverage processed = pdfs.select( fc.col("file_path"), fc.semantic.parse_pdf(fc.col("file_path"), describe_images=True) ).select( fc.col("file_path"), fc.semantic.extract("markdown", Schema).alias("extracted") ) # Separate successful from failed extractions successful = processed.filter(fc.col("extracted").is_not_null()) failed = processed.filter(fc.col("extracted").is_null()) # Route failures for manual review or retry failed.select( fc.col("file_path"), fc.lit("extraction_failed").alias("status") ).write.csv("review_queue.csv")
Track coverage metrics through Fenic's metrics system to identify systematic failures requiring prompt adjustment or model changes.
Local Development to Cloud Scaling
Fenic enables full local development. Build and test complete pipelines on your laptop, then deploy to production without code changes.
python# Development configuration dev_config = fc.SessionConfig( app_name="visual_pipeline", semantic=fc.SemanticConfig( language_models={ "dev": fc.OpenAILanguageModel( model_name="gpt-4o-mini", rpm=10, tpm=10_000 ) } ) ) # Production configuration with cloud scaling prod_config = fc.SessionConfig( app_name="visual_pipeline", semantic=fc.SemanticConfig( language_models={ "prod": fc.OpenAILanguageModel( model_name="gpt-4o", rpm=500, tpm=200_000 ) } ), cloud=fc.CloudConfig( executor_size="large" ) )
The local-first development philosophy ensures you can prototype against sample data before committing to cloud infrastructure. Read more: https://typedef.ai/blog/fenic-open-source
Monitoring Visual Pipelines
Track key metrics for multimodal processing:
python# Access built-in metrics metrics = session.table("fenic_system.query_metrics") # Analyze processing costs cost_summary = metrics.filter( fc.col("operation").contains("parse_pdf") ).select( fc.col("model"), fc.sum("cost_usd").alias("total_cost"), fc.avg("latency_ms").alias("avg_latency"), fc.count("*").alias("operations") ).group_by("model") cost_summary.show()
Monitor image processing latency separately from text operations. Visual content typically requires more tokens and longer processing times.
Key Metrics to Track
Processing Coverage
- Percentage of images successfully processed
- Declining coverage indicates quality issues in input data
Extraction Accuracy
- Validate structured extraction against test sets
- Track accuracy over time to detect model drift
Cost Per Document
- Processing cost by model and document type
- Optimize spending based on value delivered
Latency Percentiles
- P50, P95, P99 processing times
- Identify bottlenecks and set appropriate timeouts
Error Recovery Strategies
Visual processing introduces failure modes beyond text processing. Files become corrupted. Images are unreadable. Transcripts contain only music with no speech.
Implement layered error handling:
pythonfrom fenic.core.exceptions import ExecutionError try: # Attempt primary processing path results = pdfs.select( fc.semantic.parse_pdf( fc.col("path"), describe_images=True, model_alias="primary" ) ) except ExecutionError as e: # Fallback to simpler model or text-only extraction results = pdfs.select( fc.semantic.parse_pdf( fc.col("path"), describe_images=False, model_alias="fallback" ) ) # Log degraded processing logging.warning(f"Fell back to text-only: {e}")
Store processing status alongside results to enable downstream systems to handle degraded data appropriately.
Document Intelligence Pipeline
Process mixed document types with embedded images:
python# Classify documents by content type docs = session.read.pdf_metadata("incoming/**/*.pdf") # Route based on visual content classified = docs.select( fc.col("file_path"), fc.col("image_count"), fc.col("page_count"), fc.when( fc.col("image_count") > 5, fc.lit("image_heavy") ).when( fc.col("has_signature_fields"), fc.lit("form") ).otherwise( fc.lit("text") ).alias("doc_type") ) # Process each category optimally image_heavy = classified.filter(fc.col("doc_type") == "image_heavy") forms = classified.filter(fc.col("doc_type") == "form") text_docs = classified.filter(fc.col("doc_type") == "text") # Vision model for image-heavy documents image_results = image_heavy.select( fc.semantic.parse_pdf( fc.col("file_path"), describe_images=True, model_alias="vision_model" ) ).select( fc.semantic.extract("content", ImageHeavySchema) )
This pattern appears in case studies like https://typedef.ai/blog/how-typedef-cut-rudderstack-s-triage-time-by-95 where intelligent routing reduces costs while maintaining quality.
Video Meeting Analysis
Extract insights from recorded meetings with temporal context:
pythonfrom fenic.core.types import TranscriptType # Load meeting transcripts meetings = session.read.docs( "recordings/**/*.srt", content_type="markdown", recursive=True ) # Extract action items with timestamps class ActionItem(BaseModel): task: str owner: str deadline: Optional[str] timestamp: str actions = meetings.select( fc.col("file_path").alias("meeting"), fc.col("speaker"), fc.col("start_time"), fc.semantic.extract( fc.col("content"), response_format=ActionItem ).alias("action") ).filter( fc.col("action").is_not_null() ) # Aggregate by owner assignments = actions.group_by("action.owner").agg( fc.count("*").alias("total_tasks"), fc.collect_list("action.task").alias("tasks") )
Temporal alignment enables:
- Generating timestamped summaries
- Enabling navigation to relevant video segments
- Correlating action items with specific meeting moments
Visual Content Classification
Build content moderation or tagging systems:
python# Process images in PDF documents images = session.read.pdf_metadata("user_uploads/**/*.pdf") parsed = images.select( fc.col("file_path"), fc.semantic.parse_pdf( fc.col("file_path"), describe_images=True ) ) # Classify visual content classified = parsed.select( fc.col("file_path"), fc.semantic.classify( fc.col("markdown"), classes=["product", "person", "text", "diagram", "other"], examples=classification_examples ).alias("category"), fc.semantic.analyze_sentiment(fc.col("markdown")).alias("sentiment") ) # Flag content requiring review flagged = classified.filter( (fc.col("category") == "person") | (fc.col("sentiment.label") == "negative") )
Built-in operators like analyze_sentiment and classify simplify common visual content tasks.
Cost Optimization Strategies
Visual processing costs scale with image count and resolution. Optimize spending through several techniques.
Selective Image Processing
Process only images, not entire PDFs, when text content has low value:
python# Two-pass approach # Pass 1: Extract text without image descriptions (cheap) text_only = pdfs.select( fc.semantic.parse_pdf(fc.col("path"), describe_images=False) ) # Pass 2: Process images only for relevant documents relevant = text_only.filter( fc.col("markdown").contains("see diagram|refer to figure") ) # Expensive image processing only where needed with_images = relevant.select( fc.semantic.parse_pdf( fc.col("path"), describe_images=True, model_alias="vision_model" ) )
This two-stage approach reduces costs by 40-60% for document sets where most pages lack meaningful visual content.
Token Budget Management
Context windows from https://typedef.ai/resources/multimodal-ai-engine-stats now reach 2 million tokens, enabling large documents in single calls. However, costs scale with context usage.
pythonconfig = fc.SessionConfig( semantic=fc.SemanticConfig( language_models={ "budget": fc.OpenAILanguageModel( model_name="gpt-4o-mini", rpm=1000, tpm=500_000 ) } ) ) # Limit output tokens for summaries summaries = df.select( fc.semantic.map( "Summarize: {{content}}", content=fc.col("content"), max_output_tokens=256 # Constrain output length ) )
Track spending through metrics tables and set budget alerts for production pipelines.
Resolution and Quality Tradeoffs
Not all images require high-resolution processing. Focus expensive vision models on documents where visual content provides unique value:
python# Filter for high-value images high_value = pdfs.filter( (fc.col("image_count") > 3) & (fc.col("page_count") < 20) & (fc.col("title").contains("roadmap|strategy|architecture")) )
Content Redaction for Compliance
Visual content often contains sensitive information. Product images show unreleased features. Screenshots capture customer data. Meeting recordings include confidential discussions.
PII Removal Before Processing
pythonimport re def redact_pii(text: str) -> str: # Redact emails text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]', text) # Redact phone numbers text = re.sub(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', '[PHONE]', text) return text # Apply redaction before processing redacted = pdfs.select( fc.col("file_path"), fc.semantic.parse_pdf(fc.col("file_path")) ).select( fc.col("file_path"), fc.udf(redact_pii, return_type=fc.StringType)(fc.col("markdown")).alias("redacted") ) # Safe to process after redaction results = redacted.select( fc.semantic.extract("redacted", Schema) )
Implement redaction before any external model calls to prevent data leakage.
Audit Trails with Lineage Tracking
Fenic's lineage tracking provides row-level processing history. Details at https://typedef.ai/resources/build-reliable-ai-pipelines-fenic-semantic-operators
python# Load the table and create lineage object processed_images = session.table("processed_images") lineage = processed_images.lineage() # Trace specific rows backwards through transformations source_rows = lineage.backward(["document_123"])
Lineage enables:
- Compliance audits
- Debugging processing issues
- Cost attribution to specific operations
Data Warehouse Integration
Store processed visual data alongside structured data:
python# Process images processed = pdfs.select( fc.col("file_path"), fc.semantic.parse_pdf(fc.col("file_path"), describe_images=True) ).select( fc.semantic.extract("markdown", ProductInfo) ).unnest("product_info") # Join with structured product catalog catalog = session.read.table("warehouse.products") enriched = processed.join( catalog, on=fc.col("product_id") == catalog.col("id") ) # Write back to warehouse enriched.write.save_as_table("warehouse.product_images_processed", mode="overwrite")
Warehouse-native operations from https://typedef.ai/blog/typedef-launch enable querying visual insights alongside transactional data.
API Exposure with MCP Server
Serve processed visual data through APIs using Fenic's MCP server:
pythonfrom fenic.api.mcp import create_mcp_server, run_mcp_server_asgi # Register search tool session.catalog.create_tool( tool_name="search_images", tool_description="Search processed images by content", tool_query=processed_images.filter( fc.col("description").contains("{{search_term}}") ), tool_params=[ fc.ToolParam( name="search_term", description="Content to search for" ) ] ) # Serve via HTTP tools = session.catalog.list_tools() server = create_mcp_server(session, "ImageAPI", tools=tools) app = run_mcp_server_asgi(server, port=8000)
Expose visual intelligence to downstream applications through standardized interfaces.
Measuring Processing Coverage
What percentage of images are successfully processed?
python# Calculate coverage total = pdfs.count() successful = pdfs.select( fc.semantic.parse_pdf(fc.col("file_path"), describe_images=True) ).filter( fc.col("markdown").is_not_null() & fc.col("markdown").contains("![") # Has image descriptions ).count() coverage = (successful / total) * 100 print(f"Image processing coverage: {coverage:.1f}%")
Track coverage over time. Declining coverage indicates quality issues in input data or model problems.
Extraction Accuracy Validation
For structured extraction, validate against ground truth:
python# Load test set with known labels test_set = session.read.csv("test_images.csv") # Process through pipeline predictions = test_set.select( fc.col("file_path"), fc.semantic.parse_pdf(fc.col("file_path"), describe_images=True) ).select( fc.col("file_path"), fc.semantic.extract("markdown", ProductInfo).alias("predicted"), fc.col("ground_truth") ) # Calculate accuracy matches = predictions.filter( fc.col("predicted.product_id") == fc.col("ground_truth.product_id") ).count() accuracy = (matches / test_set.count()) * 100
Run accuracy checks regularly to detect model drift or prompt degradation.
Horizontal Scaling for Large Workloads
Fenic's DataFrame abstraction enables parallel processing:
python# Process batches in parallel import concurrent.futures def process_batch(file_paths: list) -> fc.DataFrame: batch = session.read.pdf_metadata(file_paths) return batch.select( fc.semantic.parse_pdf(fc.col("file_path"), describe_images=True) ) # Partition workload all_files = list(Path("documents/").glob("**/*.pdf")) batch_size = 100 batches = [all_files[i:i+batch_size] for i in range(0, len(all_files), batch_size)] # Process in parallel with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: results = list(executor.map(process_batch, batches))
Incremental Processing for Large Repositories
Avoid reprocessing unchanged documents:
python# Track processed files processed_log = session.table("processed_log") # Get new files since last run all_pdfs = session.read.pdf_metadata("documents/**/*.pdf") new_pdfs = all_pdfs.join( processed_log, on=fc.col("file_path") == processed_log.col("path"), how="left_anti" # Anti-join for new files only ) # Process only new documents results = new_pdfs.select( fc.semantic.parse_pdf(fc.col("file_path"), describe_images=True) ) # Update log new_pdfs.select( fc.col("file_path").alias("path"), fc.current_timestamp().alias("processed_at") ).write.save_as_table("processed_log", mode="append")
Incremental processing reduces costs and latency for large document repositories.
Cloud Deployment Configuration
Scale compute resources based on workload:
pythonfrom fenic.api.session.config import CloudExecutorSize # Production configuration with cloud scaling config = fc.SessionConfig( app_name="visual_pipeline_prod", cloud=fc.CloudConfig( size=CloudExecutorSize.XLARGE # Scale up for heavy workloads ), semantic=fc.SemanticConfig( language_models={ "prod": fc.OpenAILanguageModel( model_name="gpt-4o", rpm=1000, # Higher limits for production tpm=1_000_000 ) } ) )
Cloud deployment requires zero code changes from local development. Learn more: https://typedef.ai/blog/fenic-open-source
Implementation Checklist
Before deploying visual processing pipelines to production:
Data Pipeline
- Implement metadata-based routing for different document types
- Add deduplication before expensive model calls
- Cache intermediate results at key processing stages
- Set up incremental processing for large repositories
Model Configuration
- Configure rate limits based on provider tiers
- Set up fallback models for error recovery
- Implement token budget controls for cost management
- Test provider failover mechanisms
Monitoring
- Track processing coverage metrics
- Monitor extraction accuracy against test sets
- Set up cost tracking per document type
- Alert on anomalous latency or error rates
Compliance
- Implement PII redaction before model calls
- Set up audit trails with lineage tracking
- Configure data residency requirements
- Document processing decisions for compliance reviews
Operations
- Test error recovery paths
- Document fallback procedures
- Set up monitoring dashboards
- Plan capacity for peak loads
Getting Started
Start building visual processing pipelines with Fenic:
GitHub Repository https://github.com/typedef-ai/fenic
Documentation https://docs.fenic.ai
Example Implementations https://github.com/typedef-ai/fenic/tree/main/examples
Community Support https://discord.gg/pKDRPAY8pB
Framework Overview https://typedef.ai/blog/fenic-open-source
Latest Release https://typedef.ai/blog/fenic-0-5-0-smarter-docs-date-data-types-openrouter-plus-planning-and-reliability-upgrades
Technical Deep Dive https://typedef.ai/resources/build-reliable-ai-pipelines-fenic-semantic-operators
Processing visual data at scale requires infrastructure that treats images and video as native data types. Fenic's DataFrame abstraction brings the reliability of traditional data processing to multimodal content. Build pipelines that scale from prototype to production with declarative operations, automatic optimization, and type-safe extraction. How to Handle Video and Ima ... fcf08012880ecb242d70ee5c.md External Displaying How to Handle Video and Image Data in Unstructured 290df41efcf08012880ecb242d70ee5c.md.

