Policy documents and transcripts contain critical information—regulatory requirements, compliance mandates, meeting decisions, and stakeholder communications. Traditional manual review and brittle text processing scripts cannot handle the volume and variability at scale.
Semantic intelligence transforms unstructured policy text and conversation data into structured, queryable datasets using DataFrame operations. This guide demonstrates production-ready implementation patterns for policy document and transcript analysis.
Infrastructure Requirements
Fenic provides the DataFrame framework for semantic document processing. Install the framework:
bashpip install fenic
Configure environment variables for LLM providers:
bashexport OPENAI_API_KEY="your-key" export ANTHROPIC_API_KEY="your-key" export GOOGLE_API_KEY="your-key"
Initialize a session with multi-provider configuration:
pythonimport fenic as fc from fenic.api.session import Session from fenic.api.session.config import SessionConfig, SemanticConfig from fenic.core.types.datatypes import MarkdownType from fenic.api.functions import semantic, markdown, text config = SessionConfig( app_name="policy_analysis", semantic=SemanticConfig( language_models={ "nano": fc.OpenAILanguageModel( model_name="gpt-4o-nano", rpm=500, tpm=200_000 ), "mini": fc.OpenAILanguageModel( model_name="gpt-4o-mini", rpm=300, tpm=150_000 ), "claude": fc.AnthropicLanguageModel( model_name="claude-opus-4-0", rpm=100, input_tpm=100_000, output_tpm=100_000 ), }, default_language_model="mini", ), ) session = Session.get_or_create(config)
Model aliases abstract provider-specific details. Rate limiting parameters (rpm for requests per minute, tpm for tokens per minute) prevent throttling. Fenic automatically batches requests and implements retry logic.
Schema-Driven Policy Document Extraction
Schema-driven extraction eliminates regex patterns and custom parsing logic by defining output structure once using Pydantic models.
Policy Document Schema Definition
Create schemas that capture required structure:
pythonfrom pydantic import BaseModel, Field from typing import List, Literal class Requirement(BaseModel): category: Literal["mandatory", "recommended", "prohibited"] description: str = Field(description="What is required or prohibited") applies_to: List[str] = Field(description="Who this requirement affects") effective_date: str = Field(description="When this takes effect") consequences: str = Field(description="What happens if not followed") class PolicyDocument(BaseModel): title: str = Field(description="Official policy title") document_id: str = Field(description="Policy identification number") department: str = Field(description="Issuing department or agency") effective_date: str = Field(description="When policy becomes active") requirements: List[Requirement] definitions: List[str] = Field(description="Key terms defined in policy") supersedes: List[str] = Field(description="Previous policies this replaces")
Field descriptions guide extraction. The schema functions as both documentation and validation.
Document Processing Implementation
Load documents from storage and extract structured data:
pythonimport fenic.api.functions as fc # Load policy documents policies_df = session.read.docs( "policies/**/*.md", content_type="markdown", recursive=True ) # Cast to MarkdownType for structure-aware processing policies_df = policies_df.with_column( "structured_content", fc.col("content").cast(MarkdownType) ) # Extract structured policy information extracted_policies = policies_df.with_column( "policy_data", semantic.extract( fc.col("structured_content"), PolicyDocument, model_alias="mini" ) ) # Unnest extracted structure into columns flat_policies = extracted_policies.unnest("policy_data") # Explode requirements list into separate rows requirements_df = flat_policies.select( fc.col("file_path"), fc.col("title"), fc.col("department"), fc.col("effective_date"), fc.explode(fc.col("requirements")).alias("req") ) # Access nested fields final_requirements = requirements_df.select( fc.col("title").alias("policy_title"), fc.col("department"), fc.col("req.category").alias("requirement_type"), fc.col("req.description").alias("requirement"), fc.col("req.applies_to").alias("affected_parties"), fc.col("req.consequences").alias("non_compliance_impact") ) final_requirements.show()
The pipeline reads files, casts content to MarkdownType for structure-aware processing, extracts structured information using schemas, unnests nested structures, and explodes lists into rows.
Semantic-Aware Document Chunking
Policy documents often exceed model context windows. Native markdown support enables structure-preserving chunking:
pythonfrom fenic.api.functions import markdown chunked_policies = policies_df.select( fc.col("file_path"), fc.col("title"), markdown.extract_header_chunks( "structured_content", header_level=2 ).alias("sections") ).explode("sections") # Extract from each section section_analysis = chunked_policies.with_column( "section_data", semantic.extract( fc.col("sections.content"), Requirement, model_alias="mini" ) )
The extract_header_chunks function splits documents at header boundaries, preserving semantic context rather than splitting mid-sentence.
Transcript Processing with Temporal Awareness
Fenic's TranscriptType handles multiple formats with unified processing while maintaining speaker identity, timestamps, and conversation flow.
Multi-Format Transcript Parsing
Fenic supports SRT, WebVTT, and generic transcript formats:
pythonfrom fenic.api.functions import text # Load transcript files transcripts_df = session.read.docs( ["meetings/**/*.srt", "calls/**/*.vtt", "interviews/**/*.txt"], content_type="markdown", recursive=True ) # Detect format from file extension formatted_df = transcripts_df.with_column( "format", fc.when(fc.col("file_path").like("%.srt"), fc.lit("srt")) .when(fc.col("file_path").like("%.vtt"), fc.lit("webvtt")) .otherwise(fc.lit("generic")) ) # Parse based on format parsed_df = formatted_df.select( fc.col("file_path"), text.parse_transcript( fc.col("content"), fc.col("format") ).alias("segments") ) # Explode segments into rows segments_df = parsed_df.select( fc.col("file_path"), fc.explode(fc.col("segments")).alias("seg") ).select( fc.col("file_path"), fc.col("seg.index").alias("sequence"), fc.col("seg.speaker").alias("speaker"), fc.col("seg.start_time").alias("start_seconds"), fc.col("seg.end_time").alias("end_seconds"), fc.col("seg.content").alias("text") ) segments_df.show()
The unified schema provides consistent access to speaker, timestamps, and content regardless of original format.
Structured Information Extraction from Conversations
Define schemas for conversation analysis:
pythonclass MeetingDecision(BaseModel): decision: str = Field(description="What was decided") rationale: str = Field(description="Why this decision was made") responsible_party: str = Field(description="Who will execute this") deadline: str = Field(description="When this must be completed") dependencies: List[str] = Field(description="What must happen first") class PolicyDiscussion(BaseModel): policy_area: str = Field(description="Which policy is discussed") concerns_raised: List[str] = Field(description="Issues mentioned") proposed_changes: List[str] = Field(description="Suggested modifications") consensus_level: Literal["unanimous", "majority", "divided", "no_consensus"]
Apply extraction to transcript segments:
python# Extract decisions from meeting segments decisions_df = segments_df.filter( semantic.predicate( "Does this segment contain a decision or action item? Text: {{text}}", text=fc.col("text") ) ) ).with_column( "decision_data", fc.semantic.extract( fc.col("text"), MeetingDecision, model_alias="mini" ) ) # Unnest for analysis final_decisions = decisions_df.select( fc.col("file_path"), fc.col("speaker"), fc.col("start_seconds"), fc.col("decision_data.decision").alias("what"), fc.col("decision_data.responsible_party").alias("who"), fc.col("decision_data.deadline").alias("when"), fc.col("decision_data.rationale").alias("why") ) final_decisions.write.csv("meeting_decisions.csv")
Semantic predicates filter segments to only those containing decisions, reducing extraction costs by processing fewer rows.
Semantic Analysis Patterns
Document Classification
Categorize documents without training custom models:
pythonfrom fenic.api.functions import semantic classified_policies = flat_policies.with_column( "category", semantic.classify( fc.col("structured_content"), [ "Data Privacy", "Information Security", "Acceptable Use", "Records Retention", "Code of Conduct", "Procurement", "Travel and Expenses" ], model_alias="nano" ) ) # Aggregate by category category_summary = classified_policies.group_by("category").agg( fc.count("*").alias("policy_count"), fc.collect_list("title").alias("policies") ) category_summary.show()
Sentiment Analysis on Stakeholder Feedback
Track sentiment across policy discussions:
pythonsentiment_df = segments_df.with_column( "sentiment", semantic.analyze_sentiment(fc.col("text")) ) # Aggregate sentiment by speaker speaker_sentiment = sentiment_df.group_by("speaker").agg( fc.count("*").alias("total_segments"), fc.sum( fc.when(fc.col("sentiment") == "positive", 1).otherwise(0) ).alias("positive_count"), fc.sum( fc.when(fc.col("sentiment") == "negative", 1).otherwise(0) ).alias("negative_count"), fc.sum( fc.when(fc.col("sentiment") == "neutral", 1).otherwise(0) ).alias("neutral_count") ) # Calculate sentiment ratio speaker_sentiment = speaker_sentiment.with_column( "positivity_ratio", fc.col("positive_count") / fc.col("total_segments") ) speaker_sentiment.order_by(fc.col("positivity_ratio").desc()).show()
Temporal Sentiment Analysis
Track sentiment evolution during meetings:
python# Create 5-minute time buckets windowed_sentiment = sentiment_df.with_column( "time_bucket", (fc.col("start_seconds") / 300).cast("integer") * 300 ) temporal_sentiment = windowed_sentiment.group_by( "file_path", "time_bucket" ).agg( fc.count("*").alias("segment_count"), fc.avg( fc.when(fc.col("sentiment") == "positive", 1) .when(fc.col("sentiment") == "negative", -1) .otherwise(0) ).alias("sentiment_score") ) # Identify sentiment shifts temporal_sentiment.order_by( "file_path", "time_bucket" ).show()
This pattern reveals when discussions become contentious or reach consensus.
Semantic Joins for Cross-Document Analysis
Link policy requirements with meeting discussions using semantic joins:
python# Policy requirements DataFrame policy_reqs = final_requirements.select( fc.col("policy_title"), fc.col("requirement") ) # Meeting discussion segments meeting_segments = segments_df.select( fc.col("file_path").alias("meeting_file"), fc.col("text").alias("discussion") ) # Join on semantic similarity policy_discussion_links = policy_reqs.semantic.join( other=meeting_segments, predicate=""" Does this meeting discussion address or relate to this policy requirement? Policy Requirement: {{left_on}} Meeting Discussion: {{right_on}} Return true if the discussion mentions, questions, or proposes changes to the requirement. """, left_on=fc.col("requirement"), right_on=fc.col("discussion") ) policy_discussion_links.select( fc.col("policy_title"), fc.col("requirement"), fc.col("meeting_file"), fc.col("discussion") ).show(truncate=100)
This identifies which policies are discussed in which meetings without requiring exact keyword matches.
Compliance Gap Detection
Identify policy requirements without corresponding implementation plans:
python# Extract action items from transcripts action_items_df = segments_df.filter( fc.semantic.predicate( "Is this an action item or implementation plan? Text: {{text}}", text=fc.col("text") ) ).select( fc.col("text").alias("action_description") ) # Semantic anti-join: requirements WITHOUT matching actions compliance_gaps = final_requirements.semantic.join( other=action_items_df, predicate=""" Does this action item address this policy requirement? Requirement: {{left_on}} Action: {{right_on}} """, left_on=fc.col("requirement"), right_on=fc.col("action_description"), join_type="left_anti" ) # Requirements without implementation plans compliance_gaps.select( fc.col("policy_title"), fc.col("requirement_type"), fc.col("requirement") ).show()
Semantic Aggregation
Generate summaries that preserve context:
python# Summarize policy discussions by topic discussion_summaries = segments_df.with_column( "topic", semantic.classify( fc.col("text"), ["Data Security", "Employee Rights", "Budget", "Timeline", "Other"], model_alias="nano" ) ).group_by("file_path", "topic").agg( semantic.reduce( "Summarize the key points discussed about this topic", fc.col("text"), order_by=fc.col("start_seconds"), model_alias="mini" ).alias("topic_summary") ) discussion_summaries.show(truncate=150)
The semantic.reduce operator aggregates text semantically while maintaining temporal order, producing coherent summaries that reflect conversation flow.
Production Deployment
Cost Optimization Through Model Selection
Use appropriate model sizes:
pythonconfig = SessionConfig( semantic=SemanticConfig( language_models={ "nano": fc.OpenAILanguageModel("gpt-4o-nano", rpm=500, tpm=200_000), "mini": fc.OpenAILanguageModel("gpt-4o-mini", rpm=300, tpm=150_000), "claude": fc.AnthropicLanguageModel("claude-opus-4-0", rpm=100) }, default_language_model="mini" ) ) # Use nano for simple classification .semantic.classify(col, classes, model_alias="nano") # Use mini for structured extraction .semantic.extract(col, schema, model_alias="mini") # Use claude only for advanced reasoning .semantic.join(..., model_alias="claude")
Strategic model selection reduces total processing costs by 60-80% while maintaining quality for appropriate tasks.
Batch Processing
Process documents in batches to amortize fixed costs:
python# Process large document sets large_policy_set = session.read.docs( "s3://policy-bucket/**/*.pdf", content_type="markdown", recursive=True ) # Automatic batching of semantic operations processed = ( large_policy_set .with_column("extracted", fc.semantic.extract("content", PolicyDocument)) .unnest("extracted") .filter(fc.col("effective_date") > "2024-01-01") ) # Write results to lakehouse processed.write.parquet("s3://processed-policies/")
Automatic batching groups API calls efficiently, maximizing throughput while respecting rate limits through self-throttling.
Caching for Iterative Development
Cache expensive operations:
python# Extract structure once, cache for multiple analyses base_extraction = ( policies_df .with_column("policy_data", fc.semantic.extract("content", PolicyDocument)) .cache() ) # Run multiple analyses on cached data compliance_analysis = base_extraction.filter( fc.col("policy_data.category") == "mandatory" ) risk_analysis = base_extraction.filter( fc.semantic.predicate( "Does this policy have compliance risk? {{content}}", content=fc.col("content") ) )
Caching prevents redundant API calls when running multiple analyses on the same extracted data.
Monitoring and Observability
Track costs and performance:
pythonresult = processed.collect() metrics = result.metrics() print(f"Total tokens used: {metrics.lm_metrics.total_tokens}") print(f"Total cost: ${metrics.lm_metrics.total_cost}") print(f"Execution time: {metrics.execution_time}s") # Per-operation metrics for op_metric in metrics.operator_metrics: if op_metric.cost > 5.0: print(f"High cost operator: {op_metric.name}") print(f" Cost: ${op_metric.cost}") print(f" Duration: {op_metric.duration}s")
Built-in metrics provide observability into LLM operations for targeted optimization.
Error Handling
Production pipelines require robust error handling:
python# Add error handling for extraction failures safe_extraction = policies_df.with_column( "extracted", fc.when( fc.col("content").is_not_null() & (fc.length(fc.col("content")) > 100), fc.semantic.extract(fc.col("content"), PolicyDocument, model_alias="mini") ).otherwise(fc.lit(None)) ) # Separate successful extractions from failures successful = safe_extraction.filter(fc.col("extracted").is_not_null()) failed = safe_extraction.filter(fc.col("extracted").is_null()) # Log failures failed.select( fc.col("file_path"), fc.lit("Extraction failed - content too short or null").alias("error") ).write.csv("extraction_errors.csv") # Process successful extractions successful.unnest("extracted").write.parquet("processed_policies.parquet")
Automatic retry logic handles transient failures, while explicit error handling ensures graceful degradation.
End-to-End Policy Analysis Pipeline
Production-ready implementation:
pythonimport fenic as fc from fenic.api.session import Session from fenic.api.session.config import SessionConfig, SemanticConfig from fenic.core.types.datatypes import MarkdownType import fenic.api.functions as fc_funcs from fenic.api.functions import semantic, text from pydantic import BaseModel, Field from typing import List, Literal # Schema definitions class PolicyRequirement(BaseModel): category: Literal["mandatory", "recommended", "prohibited"] description: str applies_to: List[str] effective_date: str class PolicyDocument(BaseModel): title: str department: str requirements: List[PolicyRequirement] class MeetingAction(BaseModel): action: str owner: str deadline: str # Initialize session config = SessionConfig( app_name="policy_compliance_analysis", semantic=SemanticConfig( language_models={ "nano": fc.OpenAILanguageModel("gpt-4o-nano", rpm=500, tpm=200_000), "mini": fc.OpenAILanguageModel("gpt-4o-mini", rpm=300, tpm=150_000), }, default_language_model="mini" ) ) session = Session.get_or_create(config) # Load and process policy documents policies = ( session.read.docs("policies/**/*.md", content_type="markdown", recursive=True) .with_column("structured", fc_funcs.col("content").cast(MarkdownType)) .with_column("policy_data", semantic.extract("structured", PolicyDocument, model_alias="mini")) .cache() ) # Extract requirements requirements = ( policies .unnest("policy_data") .select( fc_funcs.col("file_path"), fc_funcs.col("title"), fc_funcs.col("department"), fc_funcs.explode(fc_funcs.col("requirements")).alias("req") ) .select( fc_funcs.col("title").alias("policy"), fc_funcs.col("req.category").alias("type"), fc_funcs.col("req.description").alias("requirement") ) ) # Load and process meeting transcripts transcripts = ( session.read.docs("meetings/**/*.srt", content_type="markdown", recursive=True) .select( fc_funcs.col("file_path"), text.parse_transcript(fc_funcs.col("content"), "srt").alias("segments") ) .select( fc_funcs.col("file_path"), fc_funcs.explode(fc_funcs.col("segments")).alias("seg") ) .select( fc_funcs.col("file_path"), fc_funcs.col("seg.speaker").alias("speaker"), fc_funcs.col("seg.content").alias("text") ) ) # Extract action items actions = ( transcripts .filter( semantic.predicate( "Is this an action item or commitment? Text: {{text}}", text=fc_funcs.col("text") ) ) .with_column("action_data", semantic.extract("text", MeetingAction, model_alias="mini")) .select( fc_funcs.col("file_path").alias("meeting"), fc_funcs.col("action_data.action").alias("action") ) ) # Identify compliance gaps gaps = requirements.semantic.join( other=actions, predicate=""" Does this action address this requirement? Requirement: {{left_on}} Action: {{right_on}} """, left_on=fc_funcs.col("requirement"), right_on=fc_funcs.col("action"), join_type="left_anti" ) # Generate compliance report gaps.select( fc_funcs.col("policy"), fc_funcs.col("type"), fc_funcs.col("requirement") ).write.csv("compliance_gaps_report.csv") # Summary statistics summary = requirements.group_by("policy", "type").agg( fc_funcs.count("*").alias("requirement_count") ) summary.show() # Display metrics result = gaps.collect() metrics = result.metrics() print(f"\nProcessing completed:") print(f"Total cost: ${metrics.lm_metrics.total_cost}") print(f"Total tokens: {metrics.lm_metrics.total_tokens}") print(f"Execution time: {metrics.execution_time}s") session.stop()
This pipeline loads policy documents, extracts structured requirements, processes meeting transcripts, identifies action items, performs semantic matching to find compliance gaps, and generates reports with automatic batching, error handling, and cost tracking.
Performance and Scalability
Lakehouse-Native Architecture
Lakehouse-native design eliminates data movement:
python# Read directly from data lake policies = session.read.parquet("s3://policy-lake/raw/") # Process with semantic operations processed = policies.semantic.extract(...) # Write back to lake (Fenic supports parquet format for writing) processed.write.parquet("s3://policy-lake/processed/policies.parquet")
Local Development with Cloud Deployment
Develop locally, deploy to cloud without code changes:
python# Local development local_policies = session.read.docs("local_data/*.md") local_processed = local_policies.semantic.extract(...) # Cloud deployment - same code, different path cloud_policies = session.read.docs("s3://policies/**/*.md") cloud_processed = cloud_policies.semantic.extract(...)
Zero-code-change deployment from prototype to production.
Multi-Provider Support
Avoid vendor lock-in:
pythonconfig = SessionConfig( semantic=SemanticConfig( language_models={ "openai": fc.OpenAILanguageModel("gpt-4o-mini"), "claude": fc.AnthropicLanguageModel("claude-opus-4-0"), "gemini": fc.GoogleVertexLanguageModel("gemini-2.0-flash"), }, default_language_model="openai" ) ) # Switch providers without changing pipeline code .semantic.extract(col, schema, model_alias="claude")
Industry Applications
Financial Services Compliance
Banks process regulatory documents and board meeting transcripts to ensure compliance. Semantic extraction identifies requirements, semantic joins link requirements to control implementations, and gap analysis flags compliance risks before audits.
Healthcare Policy Management
Healthcare organizations manage HIPAA compliance documents, patient privacy policies, and clinical protocol updates. Schema-driven extraction transforms policy documents into structured datasets that integrate with clinical systems.
Government and Public Sector
Government agencies process legislative documents, public hearing transcripts, and policy proposals. Semantic intelligence enables cross-referencing between proposed legislation and existing regulations, identifies conflicts or overlaps, and generates summaries.
Enterprise Policy Compliance
Organizations maintain hundreds of internal policies covering data security, employee conduct, procurement rules, and operational procedures. Semantic analysis automates policy review, identifies outdated requirements, and ensures policy communications reach affected stakeholders.
Legal and Regulatory Analysis
Law firms and compliance consultancies analyze regulatory filings, court transcripts, and policy documentation. Semantic operators enable precedent analysis, regulatory change tracking, and automated brief generation.
Implementation Approach
Start with a focused pilot:
- Select 10-20 representative policy documents and transcripts
- Define schemas for specific domain requirements
- Build a pipeline processing sample dataset
- Validate extraction accuracy and iterate on schemas
- Monitor costs and optimize model selection
- Scale to full production dataset
Declarative pipelines built for small pilots directly translate to production systems. The same code that processes 20 documents handles 20,000 with automatic batching, error handling, and cost optimization.
Resources
- Fenic DataFrame Framework
- Schema-Driven Extraction Statistics
- Build Reliable AI Pipelines
- Transcript Processing Guide
- Composable Semantic Operators
- Typedef Platform
Load and process policy documents
policies = ( session.read.docs("policies/**/*.md", content_type="markdown", recursive=True) .with_column("structured", fc_funcs.col("content").cast(MarkdownType)) .with_column("policy_data", semantic.extract("structured", PolicyDocument, model_alias="mini")) .cache() ) How to Analyze Policy Docum ... fcf080829937f16d725abde5.md External Displaying How to Analyze Policy Documents and Transcripts wi 290df41efcf080829937f16d725abde5.md.

